Berkeley Data Analytics Stack (BDAS)

Ion Stoica
UC Berkeley / Databricks / Conviva
Data is Everywhere

Easier and cheaper than ever to collect

Data grows faster than Moore’s law

(IDC report*)
The New Gold Rush

Everyone wants to extract value from data
 » Big companies & startups alike

Huge potential
 » Already demonstrated by Google, Facebook, …

But, untapped by most companies
 » “We have lots of data but no one is looking at it!”
Extracting Value from Data Hard

Data is massive, unstructured, and dirty

Question are complex

Processing, analysis tools still in their “infancy”

Need tools that are

» Faster
» More sophisticated
» Easier to use
Turning Data into Value

Insights, diagnosis, e.g.,
» Why is user engagement dropping?
» Why is the system slow?
» Detect spam, DDoS attacks

Decisions, e.g.,
» Decide what feature to add to a product
» Personalized medical treatment
» Decide when to change an aircraft engine part
» Decide what ads to show

Data only as useful as the decisions it enables
What do We Need?

Interactive queries: enable faster decisions
» E.g., identify why a site is slow and fix it

Queries on streaming data: enable decisions on real-time data
» E.g., fraud detection, detect DDoS attacks

Sophisticated data processing: enable “better” decisions
» E.g., anomaly detection, trend analysis
Our Goal

Support *batch*, *streaming*, and *interactive* computations…
… in a unified framework

Easy to develop *sophisticated* algorithms (e.g., graph, ML algos)
The Berkeley AMPLab

January 2011 – 2017
» 8 faculty
» > 40 students and postdocs
» 3 software engineer team

Organized for collaboration

AMP

Algorithms
Machines
People

AMPCamp3
(August, 2013)

Meeting Rooms
Faculty Seating
Student Seating
Classroom

3 day retreats
(twice a year)

220 campers
(100+ companies)
The Berkeley AMPLab

Governmental and industrial funding:

Goal: Next generation of open source data analytics stack for industry & academia: Berkeley Data Analytics Stack (BDAS)
Enable multiple frameworks to share same cluster resources (e.g., Hadoop, Storm, Spark) (2009)
Scale to thousands of servers (e.g., Twitter)
Third party schedulers, e.g., Chronos, Aurora
BDAS Stack (Feb, 2013)

Data Processing Layer

Spark

Distributed Execution Engine (2009)
- Fault-tolerant, in-memory storage
- Powerful APIs (Scala, Python, Java)

Fast: up to 100x faster than HadoopMR

Easy to use: 2-5x less code than HadoopMR

General: support interactive & iterative apps
BDAS Stack (Feb, 2013)

Shark SQL

Hive over Spark: full support for HQL and UDFs (2010)
Up to 100x when input is in memory
Up to 5-10x when input is on disk
Spark Streaming

Large scale streaming engine (2011)
- Implemented as a sequence of microbatch (< 1s) jobs
 - Fault tolerant
 - Handle stragglers
 - Ensure exactly one semantics

HDFS, S3, …

Releases Research Projects 3rd party
BDAS Stack (Feb, 2013)

Approximate query processing
Trade between query latency/cost and accuracy using sampling
Provide error bounds & confidence intervals to arbitrary queries
BDAS Stack (Feb, 2013)

Make ML accessible to non-experts
Declarative API: allow users to say what they want
Automatically pick best algorithm for given data, time
Allow developers to easily add new algorithms

- Spark Streaming
- BlinkDB
- Shark SQL
- Machine Learning

- Releases
- Research Projects
- 3rd party
BDAS Stack (Feb, 2013)

- **Spark**
- **Spark Streaming**
- **Mesos**
- **Shark SQL**
- **HDFS, S3, …**

Releases

- **Hadoop**
- **Yarn**
- **3rd party**

Research Projects

- **BlinkDB**
- **Tachyon**

- In-memory, fault-tolerant storage system
- Flexible API, including HDFS API
- Allow multiple frameworks (including Hadoop) to share in-memory data

Tachyon

HDFS, S3, …

3rd party
BDAS Stack (Feb, 2014)

- Spark Streaming
- BlinkDB
- Shark SQL
- MLbase
- MLlib
- GraphX
- SparkR

Spark

Mesos

Hadoop Yarn

Tachyon

HDFS, S3, …

Releases

Research Projects

3rd party
BDAS Stack (Feb, 2014)

- Spark Streaming
- BlinkDB
- MLBase
- MLlib
- GraphX
- SparkR
- Spark
- Mesos
- Hadoop Yarn
- Tachyon
- HDFS, S3, ...

- GA
- Alpha Releases
- 3rd party
BDAS Stack (Feb, 2014)

- Spark Streaming
- BlinkDB
- MLBase
- SparkR
- Shark SQL
- MLlib
- GraphX
- Hadoop Yarn
- Tachyon
- HDFS, S3, ...

Apache License | BSD License | 3rd party
Unification: One Size Fits Many!

Using Spark & Tachyon BDAS unifies

» Batch
» Streaming
» Interactive
» Iterative (e.g., graph and ML algorithms)
Unification Examples

Real-time and historical data analysis
Streaming and machine-learning
Graph processing and ETLs
Unify Real-time and Historical Analytics

Today: separate stacks
 » Historical analysis (Hadoop, Hive)
 » Streaming (Storm)
 » Interactive queries (Impala)

Disadvantages:
 » Hard to maintain and operate
 » Hard to integrate: cannot support interactive ad-hoc queries on streaming data
Unify Real-time and Historical Analytics

Spark (+ Streaming, Shark): single stack
» Easier to build and maintain
» Cheaper to operate
» Interactive queries on streaming data: faster decisions
» Simplify development
Unify Real-time and Historical Analytics

Batch and streaming codes virtually the same

» Easy to develop and maintain consistency

// count words from a file (batch)
val file = sc.textFile("hdfs://.../pagecounts-*\rz")
val words = file.flatMap(line => line.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()

// count words from a network stream, every 10s (streaming)
val ssc = new StreamingContext(args(0), "NetCount", Seconds(10), ..)
val lines = ssc.socketTextStream("localhost", 3456)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
Unify Streaming and ML

Today: ML done mostly off-line

Spark (+ Streaming, MLbase): Real-time diagnosis & decisions
 » Fraud detection
 » Early notification of service degradation and failures
Unify Graph Processing and ETL

Today: Graph-parallel systems (Pregel, GraphLab)
» Fast and scalable, but…
» … inefficient for graph creation, post-processing

Spark (+ GraphX): unifies graph processing & ETL
» Faster to get social network insights
Unify Graph Processing and ETL

Hadoop Graph Algorithms

Graph Creation (Hadoop)

Post Proc.

Graph Creation (Spark)

Post Proc. (Spark)
Not Only General, but Fast!

- **Throughput (MB/s/node)**
 - Streaming: Storm, Spark

- **Response Time (s)**
 - Interactive (SQL): Hive, Impala (disk), Impala (mem), Shark (disk), Shark (mem)

- **Time per Iteration (s)**
 - Batch (ML, Spark): Hadoop, Spark
Gaining Rapid Traction

1,500+ Spark meetup users
30+ companies and over 100+ users contributing code

Attendees

<table>
<thead>
<tr>
<th>Event</th>
<th>Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP Camp 1 (Aug 2012)</td>
<td>150</td>
</tr>
<tr>
<td>AMP Camp 2 (Aug 2013)</td>
<td>250</td>
</tr>
<tr>
<td>Spark Summit (Dec 2013)</td>
<td>500</td>
</tr>
</tbody>
</table>
Gaining Rapid Traction

Databricks aims to build next-generation analytic tools for Big Data
A new startup will accelerate the maturation of the Berkeley Data Analytics Stack

New Cloudera Partner Program Harnesses Power of Innovative Startups
Databricks, the Inaugural Partner of Cloudera Connect: Innovators, Teams With Cloudera for High-Speed Data Analytics

An evolution of virtualization. Rather than provision and manage virtual machines, Mesosphere’s data center operating system makes executing and managing applications in a data center just like launching applications on a laptop by running them on Apache Mesos.

Download Apache Mesos
Cloudera Partnership

Integrate Spark (including SparkStreaming, MLlib) with Cloudera Manager

Spark will become part of CDH

Enterprise class support and professional services available for Spark
Summary

BDAS: address next Big Data challenges

Unify batch, interactive, and streaming computations

Easy to develop sophisticated applications
 » Support graph & ML algorithms, approximate queries

Witnessed significant adoption
 » 30+ companies, 100+ individuals contributing code

Exciting ongoing work
 » MLbase, GraphX, BlinkDB, …
What’s Next?

Rest of morning:
» Tachyon
» GraphX
» BlinkDB
» MLlib

Afternoon: hands on tutorial on Spark, Shark/ BlinkDB, GraphX, MLlib