
Tachyon: Reliable File Sharing at Memory-

Speed Across Cluster Frameworks

Haoyuan Li

UC Berkeley

Outline

Outline | Motivation| Design | Results| Status| Future

• Motivation

• System Design

• Evaluation Results

• Release Status

• Future Directions

Outline| Motivation | Design | Results| Status| Future

Memory is King

Memory Trend

Outline| Motivation | Design | Results| Status| Future

• RAM throughput increasing exponentially

Disk Trend

Outline| Motivation | Design | Results| Status| Future

• Disk throughput increasing slowly

Consequence

Outline| Motivation | Design | Results| Status| Future

• Memory locality key to achieve

– Interactive queries

– Fast query response

Current Big Data Eco-system

Outline| Motivation | Design | Results| Status| Future

• Many frameworks already leverage memory

– e.g. Spark, Shark, and other projects

• File sharing among jobs replicated to disk

– Replication enables fault-tolerance

• Problems

– Disk scan is slow for read.

– Synchronous disk replication for write is even slower.

Tachyon Project

Outline| Motivation | Design | Results| Status| Future

• Reliable file sharing at memory-speed across
cluster frameworks/jobs

• Challenge

– How to achieve reliable file sharing without
replication?

Idea

Outline| Motivation | Design | Results| Status| Future

Re-computation (Lineage) based storage
using memory aggressively.

1. One copy of data in memory (Fast)

2. Upon failure, re-compute data using
lineage (Fault tolerant)

Stack

Outline| Motivation | Design | Results| Status| Future

System Architecture

Outline| Motivation | Design | Results| Status| Future

Lineage

Outline| Motivation | Design | Results| Status| Future

Lineage Information

Outline| Motivation | Design | Results| Status| Future

• Binary program

• Configuration

• Input Files List

• Output Files List

• Dependency Type

Fault Recovery Time

Outline| Motivation | Design | Results| Status| Future

Re-computation Cost?

Example

Outline| Motivation | Design | Results| Status| Future

Asynchronous Checkpoint

Outline| Motivation | Design | Results| Status| Future

1. Better than using existing solutions even

under failure.

2. Bounded recovery time (Naïve and Snapshot

asynchronous checkpointing).

Master Fault Tolerance

Outline| Motivation | Design | Results| Status| Future

• Multiple masters

– Use ZooKeeper to elect a leader

• After crash workers contact new leader

– Update the state of leader with contents of caches

Implementation Details

Outline| Motivation | Design | Results| Status| Future

• 15,000+ lines of JAVA

• Thrift for data transport

• Underlayer file system supports HDFS, S3,

localFS, GlusterFS

• Maven, Jenkins

Sequential Read using Spark

Outline| Motivation | Design | Results | Status| Future

Flat
Datacenter

Storage

Theoretical
Maximum

Disk
Throughput

Sequential Write using Spark

Outline| Motivation | Design | Results | Status| Future

Flat
Datacenter

Storage

Theoretical
Maximum

Disk
Throughput

Realistic Workflow using Spark

Outline| Motivation | Design | Results | Status| Future

Realistic Workflow Under Failure

Outline| Motivation | Design | Results | Status| Future

Conviva Spark Query (I/O intensive)

Outline| Motivation | Design | Results | Status| Future

More than

75x speedup

Tachyon

outperforms

Spark cache

because of

JAVA GC

Conviva Spark Query (less I/O intensive)

Outline| Motivation | Design | Results | Status| Future

12x speedup

GC kicks

in earlier

for Spark

cache

Alpha Status

Outline| Motivation | Design | Results | Status | Future

• Releases

– Developer Preview: V0.2.1 (4/25/2013)

– Contributions from:

Alpha Status

Outline| Motivation | Design | Results | Status | Future

• First read of files cached in-memory

• Writes go synchronously to HDFS (No lineage

information in Developer Preview release)

• MapReduce and Spark can run without any code

change (ser/de becomes the new bottleneck)

Current Features

Outline| Motivation | Design | Results | Status | Future

• Java-like file API

• Compatible with Hadoop

• Master fault tolerance

• Native support for raw tables

• WhiteList, PinList

• Command line interaction

• Web user interface

Spark without Tachyon

Outline| Motivation | Design | Results | Status | Future

val file = sc.textFile(“hdfs://ip:port/path”)

Spark with Tachyon

Outline| Motivation | Design | Results | Status | Future

val file = sc.textFile(“tachyon:// ip:port/path”)

Shark without Tachyon

Outline| Motivation | Design | Results | Status | Future

CREATE TABLE orders_cached AS SELECT * FROM orders;

Shark with Tachyon

Outline| Motivation | Design | Results | Status | Future

CREATE TABLE orders_tachyon AS SELECT * FROM orders;

Experiments on Shark

Outline| Motivation | Design | Results | Status | Future

• Shark (from 0.7) can store tables in Tachyon

with fast columnar Ser/De

20 GB data / 5 machines Spark Cache Tachyon

Table Full Scan 1.4 sec 1.5 sec

GroupBys (10 GB Shark Memory) 50 – 90 sec 45 – 50 sec

GroupBys (15 GB Shark Memory) 44 – 48 sec 37 – 45 sec

Experiments on Shark

Outline| Motivation | Design | Results | Status | Future

• Shark (from 0.7) can store tables in Tachyon

with fast columnar Ser/De

20 GB data / 5 machines Spark Cache Tachyon

Table Full Scan 1.4 sec 1.5 sec

GroupBys (10 GB Shark Memory) 50 – 90 sec 45 – 50 sec

GroupBys (15 GB Shark Memory) 44 – 48 sec 37 – 45 sec

4 * 100 GB TPC-H data / 17 machines Spark Cache Tachyon

TPC-H Q1 65.68 sec 24.75 sec

TPC-H Q2 438.49 sec 139.25 sec

TPC-H Q3 467.79 sec 55.99 sec

TPC-H Q4 457.50 sec 111.65 sec

Future

Outline| Motivation | Design | Results | Status | Future

• Efficient Ser/De support

• Fair sharing for memory

• Full support for lineage

• Next release is coming soon

Acknowledgment

Outline| Motivation | Design | Results | Status | Future

Research Team: Haoyuan Li, Ali Ghodsi, Matei

Zaharia, Eric Baldeschwieler , Scott Shenker, Ion

Stoica

Code Contributors: Haoyuan Li, Calvin Jia, Bill

Zhao, Mark Hamstra, Rong Gu, Hobin Yoon,

Vamsi Chitters, Reynold Xin, Srinivas Parayya,

Dilip Joseph

Questions?

http://tachyon-project.org

https://github.com/amplab/tachyon

http://tachyon-project.org/
http://tachyon-project.org/
http://tachyon-project.org/
http://tachyon-project.org/
http://tachyon-project.org/
https://github.com/amplab/tachyon
https://github.com/amplab/tachyon

