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Memory is King 



Memory Trend 
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• RAM throughput increasing exponentially 



Disk Trend 
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• Disk throughput increasing slowly 



Consequence 
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• Memory locality key to achieve 

– Interactive queries 

– Fast query response 



Current Big Data Eco-system 
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• Many frameworks already leverage memory 

– e.g. Spark, Shark, and other projects 

 

• File sharing among jobs replicated to disk 

– Replication enables fault-tolerance 

 

• Problems 

– Disk scan is slow for read. 

– Synchronous disk replication for write is even slower. 



Tachyon Project 
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• Reliable file sharing at memory-speed across 
cluster frameworks/jobs 

 

• Challenge 

– How to achieve reliable file sharing without 
replication? 



Idea 
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Re-computation (Lineage) based storage 
using memory aggressively.  

 

1. One copy of data in memory (Fast) 

2. Upon failure, re-compute data using 
lineage (Fault tolerant) 

 



Stack 
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System Architecture 
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Lineage 
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Lineage Information 

Outline| Motivation | Design | Results| Status| Future 

• Binary program 

• Configuration 

• Input Files List 

• Output Files List 

• Dependency Type 

 



Fault Recovery Time 
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Re-computation Cost? 



Example 
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Asynchronous Checkpoint 
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1. Better than using existing solutions even 

under failure. 

2. Bounded recovery time (Naïve and Snapshot 

asynchronous checkpointing). 



Master Fault Tolerance 
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• Multiple masters 

– Use ZooKeeper to elect a leader 

 

• After crash workers contact new leader 

– Update the state of  leader with contents of  caches 

 

 

 



Implementation Details 
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• 15,000+ lines of  JAVA 

• Thrift for data transport 

• Underlayer file system supports HDFS, S3, 

localFS, GlusterFS 

• Maven, Jenkins 



Sequential Read using Spark 
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Sequential Write using Spark 
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Realistic Workflow using Spark 
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Realistic Workflow Under Failure 
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Conviva Spark Query (I/O intensive) 

Outline| Motivation | Design | Results | Status| Future 

More than  

75x speedup 

Tachyon  

outperforms 

Spark cache  

because of   

JAVA GC 



Conviva Spark Query (less I/O intensive) 
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12x speedup 

GC kicks 

in earlier 

for Spark 

cache 



Alpha Status 
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• Releases 

– Developer Preview: V0.2.1 (4/25/2013) 

 

– Contributions from: 

 



Alpha Status 
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• First read of  files cached in-memory 

 

• Writes go synchronously to HDFS (No lineage 

information in Developer Preview release) 

 

• MapReduce and Spark can run without any code 

change (ser/de becomes the new bottleneck) 



Current Features 
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• Java-like file API 

• Compatible with Hadoop 

• Master fault tolerance 

• Native support for raw tables 

• WhiteList, PinList 

• Command line interaction 

• Web user interface 



Spark without Tachyon 
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val file = sc.textFile(“hdfs://ip:port/path”) 

 



Spark with Tachyon 
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val file = sc.textFile(“tachyon:// ip:port/path”) 



Shark without Tachyon 
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CREATE TABLE orders_cached AS SELECT * FROM orders; 



Shark with Tachyon 
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CREATE TABLE orders_tachyon AS SELECT * FROM orders; 



Experiments on Shark 
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• Shark (from 0.7) can store tables in Tachyon 

with fast columnar Ser/De 

20 GB data / 5 machines Spark Cache Tachyon 

Table Full Scan 1.4 sec 1.5 sec 

GroupBys (10 GB Shark Memory) 50 – 90 sec 45 – 50 sec  

GroupBys (15 GB Shark Memory) 44 – 48 sec 37 – 45 sec 



Experiments on Shark 

Outline| Motivation | Design | Results | Status | Future 

• Shark (from 0.7) can store tables in Tachyon 

with fast columnar Ser/De 

20 GB data / 5 machines Spark Cache Tachyon 

Table Full Scan 1.4 sec 1.5 sec 

GroupBys (10 GB Shark Memory) 50 – 90 sec 45 – 50 sec  

GroupBys (15 GB Shark Memory) 44 – 48 sec 37 – 45 sec 

4 * 100 GB TPC-H data / 17 machines Spark Cache Tachyon 

TPC-H Q1 65.68 sec 24.75 sec 

TPC-H Q2 438.49 sec 139.25 sec 

TPC-H Q3 467.79 sec 55.99 sec  

TPC-H Q4 457.50 sec 111.65 sec 



Future 
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• Efficient Ser/De support 

 

• Fair sharing for memory 

 

• Full support for lineage 

 

• Next release is coming soon 
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Questions? 

http://tachyon-project.org 

https://github.com/amplab/tachyon 
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