Who is this guy?

- Staff Engineer, Compute and Data Services, Ooyala
- Building multiple web-scale real-time systems on top of C*, Kafka, Storm, etc.
- Scala/Akka guy
- Very excited by open source, big data projects
- @evanfchan
• Ooyala and Big Data
• What problem are we trying to solve?
• Spark and Shark
• Our Spark/Cassandra Architecture
• Spark Job Server
OOYALA AND BIG DATA
OOYALA

Powering personalized video experiences across all screens.
COMPANY OVERVIEW

Founded in 2007

Commercially launch in 2009

230+ employees in Silicon Valley, LA, NYC, London, Paris, Tokyo, Sydney & Guadalajara

Global footprint, 200M unique users, 110+ countries, and more than 6,000 websites

Over 1 billion videos played per month and 2 billion analytic events per day

25% of U.S. online viewers watch video powered by Ooyala
We have a large Big Data stack

- > 250GB of fresh logs every day
- Total of 28TB of data managed over ~200 Cassandra nodes
- Traditional stack: Hadoop, Ruby, Cassandra, Ruby...
- Real-time stack: Kafka, Storm, Scala, Cassandra
- New stack: Kafka, Akka, Cassandra, Spark, Scala/Go
Becoming a big Spark user...

- Started investing in Spark beginning of 2013
- 2 teams of developers doing stuff with Spark
- Actively contributing to Spark developer community
- Deploying Spark to a large (>100 node) production cluster
- Spark community very active, huge amount of interest
WHAT PROBLEM ARE WE TRYING TO SOLVE?
From mountains of raw data...
To nuggets of truth...

- Quickly
- Painlessly
- At scale?
Today: Precomputed Aggregates

• Video metrics computed along several high cardinality dimensions
• Very fast lookups, but inflexible, and hard to change
• Most computed aggregates are never read
• What if we need more dynamic queries?
 • Top content for mobile users in France
 • Engagement curves for users who watched recommendations
 • Data mining, trends, machine learning
THE STATIC - DYNAMIC CONTINUUM

100% Precomputation

- Super fast lookups
- Inflexible, wasteful
- Best for 80% most common queries

100% Dynamic

- Always compute results from raw data
- Flexible but slow
WHERE WE WANT TO BE

Partly *dynamic*

- Pre-aggregate most common queries
- Flexible, fast dynamic queries
- Easily generate many materialized views
INDUSTRY TRENDS

• Fast execution frameworks
 • Impala
• In-memory databases
 • VoltDB, Druid
• Streaming and real-time
• Higher-level, productive data frameworks
WHY SPARK?
THROUGHPUT: MEMORY IS KING

- **C*, cold cache**
- **C*, warm cache**
- **Spark RDD**

Spark cached RDD 10-50x faster than raw Cassandra

6-node C*/DSE 1.1.9 cluster, Spark 0.7.0

Thursday, August 29, 13
DEVELOPERS LOVE IT

• “I wrote my first aggregation job in 30 minutes”
• High level “distributed collections” API
• No Hadoop cruft
• Full power of Scala, Java, Python
• Interactive REPL shell
SPARK VS HADOOP WORD COUNT

define a Spark program to perform word count:

```python
file = spark.textFile("hdfs://...")

file.flatMap(line => line.split(" ")).map(word => (word, 1))

.reduceByKey(_ + _)
```

Then, define a Java program to perform word count using Hadoop:

```java
package org.myorg;

import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

    public static class Map extends Mapper<LongWritable, Text, Text, IntWritable>
    {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(LongWritable key, Text value, Context context)
        throws IOException, InterruptedException {
            String line = value.toString();
            StringTokenizer tokenizer = new StringTokenizer(line);
            while (tokenizer.hasMoreTokens()) {
                word.set(tokenizer.nextToken());
                context.write(word, one);
            }
        }
    }

    public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable>
    {
        public void reduce(Text key, Iterable<IntWritable> values, Context context)
        throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            context.write(key, new IntWritable(sum));
        }
    }

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "wordcount");
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        job.waitForCompletion(true);
    }
}
```

Both approaches aim to count the words in a file, but Spark's implementation is generally more efficient and easier to use due to its in-memory processing capabilities.
• Fewer platforms == lower TCO
• Much higher code sharing/reuse
• Spark/Shark/Streaming can replace Hadoop, Storm, and Impala
• Integration with Mesos, YARN helps
OUR SPARK ARCHITECTURE
From raw events to fast queries

Raw Events → Ingestion → C* event store → View 1 → Spark → View 2 → Spark → View 3 → Spark → View 1 → Spark → Predefined queries

Raw Events → Ingestion → C* event store → View 2 → Shark → Ad-hoc HiveQL
Our Spark/Shark/Cassandra Stack

Spark Master

Job Server

Spark Worker

Shark

SerDe

InputFormat

Cassandra

Node1

Spark Worker

Shark

SerDe

InputFormat

Cassandra

Node2

Spark Worker

Shark

SerDe

InputFormat

Cassandra

Node3

Spark Master
Cassandra Schema

Event CF

<table>
<thead>
<tr>
<th></th>
<th>t0</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>2013-04-05</td>
<td>T00:00Z#id1</td>
<td>{event0: a0}</td>
<td>{event1: a1}</td>
<td>{event2: a2}</td>
</tr>
</tbody>
</table>

EventAttr CF

<table>
<thead>
<tr>
<th></th>
<th>ipaddr: 10.20.30.40:t1</th>
<th>videoid:45678:t1</th>
<th>providerId:500:t0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>2013-04-05 T00:00Z#id1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INPUTFORMAT VS RDD

• You can easily use InputFormats in Spark using newAPIHadoopRDD().
• Writing a custom RDD could have saved us lots of time.

<table>
<thead>
<tr>
<th>InputFormat</th>
<th>RDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports Hadoop, HIVE, Spark, Shark</td>
<td>Spark / Shark only</td>
</tr>
<tr>
<td>Have to implement multiple classes</td>
<td>One class - simple API.</td>
</tr>
<tr>
<td>- InputFormat, RecordReader,</td>
<td></td>
</tr>
<tr>
<td>Writeable, etc. Clunky API.</td>
<td></td>
</tr>
<tr>
<td>Two APIs, and often need to</td>
<td>Just one API.</td>
</tr>
<tr>
<td>implement both (HIVE needs older...)</td>
<td></td>
</tr>
</tbody>
</table>
Unpacking Raw Events

<table>
<thead>
<tr>
<th>Date</th>
<th>User ID</th>
<th>Video</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-04-05T00:00Z #id1</td>
<td>id1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>2013-04-05T00:00Z #id2</td>
<td></td>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>

UserID	**Video**	**Type**
id1 | 10 | 5

Thursday, August 29, 13
Unpacking Raw Events

<table>
<thead>
<tr>
<th>UserID</th>
<th>Video</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>id1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>id1</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t0</th>
<th>t1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-04-05 T00:00Z#id {video: 10, type: 5}</td>
<td>{video: 11, type: 1}</td>
</tr>
<tr>
<td>2013-04-05 T00:00Z#id {video: 20, type: 5}</td>
<td>{video: 25, type: 9}</td>
</tr>
</tbody>
</table>
Unpacking Raw Events

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>UserID</th>
<th>Video</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-04-05</td>
<td>00:00Z</td>
<td>id1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>2013-04-05</td>
<td>00:00Z</td>
<td>id1</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>2013-04-05</td>
<td>00:00Z</td>
<td>id2</td>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>
Unpacking Raw Events

<table>
<thead>
<tr>
<th></th>
<th>t0</th>
<th>t1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-04-05 T00:00Z#id</td>
<td>{video: 10, type: 5}</td>
<td>{video: 11, type: 1}</td>
</tr>
<tr>
<td>2013-04-05 T00:00Z#id</td>
<td>{video: 20, type: 5}</td>
<td>{video: 25, type: 9}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UserID</th>
<th>Video</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>id1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>id1</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>id2</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>id2</td>
<td>25</td>
<td>9</td>
</tr>
</tbody>
</table>
EXAMPLE: OLAP PROCESSING

C* events

Cached Materialized Views

OLAP Aggregates

Union

Query 1: Plays by Provider

Query 2: Top content for mobile

Spark

Spark

Spark

2013-04-05T00:00Z

{video: 10, type: 5}

2013-04-05T00:00Z

{video: 20, type: 5}

2013-04-05T00:00Z

{video: 30, type: 5}
PERFORMANCE #'S

Spark: C* -> OLAP aggregates
cold cache, 1.4 million events
130 seconds

C* -> OLAP aggregates
warmed cache
20-30 seconds

OLAP aggregate query via
Spark
(56k records)
60 ms

6-node C*/DSE 1.1.9 cluster,
Spark 0.7.0
OLAP WORKFLOW

Aggregate

Query

Result

Query

Result

REST Job Server

Aggregation Job

Dataset

Query Job

Query Job

Spark Executors

Cassandra
FAULT TOLERANCE

• Cached dataset lives in Java Heap only – what if process dies?

• Spark lineage – automatic recomputation from source, but this is expensive!

 • Can also replicate cached dataset to survive single node failures

• Persist materialized views back to C*, then load into cache -- now recovery path is much faster
SPARK JOB SERVER
JOB SERVER OVERVIEW

- Spark as a Service – Job, Jar, and Context management
- Run ad-hoc Spark jobs
- Great support for sharing cached RDDs across jobs and low-latency jobs
- Works with Standalone Spark as well as Mesos
- Jars and job history is persisted via pluggable API
- Async and sync API, JSON job results
- Contributing back to Spark community in the near future
/**
 * A super-simple Spark job example that implements the SparkJob trait and
 * can be submitted to the job server.
 */

object WordCountExample extends SparkJob {
 override def validate(sc: SparkContext, config: Config): SparkJobValidation = {
 Try(config.getString("input.string"))
 .map(x => SparkJobValid)
 .getOrElse(SparkJobInvalid("No input.string"))
 }

 override def runJob(sc: SparkContext, config: Config): Any = {
 val dd = sc.parallelize(config.getString("input.string").split(" ").toSeq)
 dd.map((_, 1)).reduceByKey(_ + _).collect().toMap
 }
}
SUBMITTING AND RUNNING A JOB

✦ curl --data-binary @../target/mydemo.jar localhost:8090/jars/demo
 OK[11:32 PM] ~

✦ curl -d "input.string = A lazy dog jumped mean dog" 'localhost:8090/jobs?
 appName=demo&classPath=WordCountExample&sync=true'

 {
 "status": "OK",
 "RESULT": {
 "lazy": 1,
 "jumped": 1,
 "A": 1,
 "mean": 1,
 "dog": 2
 }
 }
THANK YOU

And YES, We’re HIRING!!

oooyala.com/careers