What is Spark?

- Fast, expressive cluster computing system compatible with Apache Hadoop
 - Works with any Hadoop-supported storage system (HDFS, S3, Avro, …)
- Improves **efficiency** through:
 - In-memory computing primitives
 - General computation graphs

 ![Up to 100× faster]

- Improves **usability** through:
 - Rich APIs in Java, Scala, Python
 - Interactive shell

 ![Often 2-10× less code]
How to Run It

- Local multicore: just a library in your program
- EC2: scripts for launching a Spark cluster
- Private cluster: Mesos, YARN, Standalone Mode
Languages

- APIs in Java, Scala and Python
- Interactive shells in Scala and Python
Key Idea

- Work with distributed collections as you would with local ones

- Concept: resilient distributed datasets (RDDs)
 - Immutable collections of objects spread across a cluster
 - Built through parallel transformations (map, filter, etc)
 - Automatically rebuilt on failure
 - Controllable persistence (e.g. caching in RAM)
Operations

- Transformations (e.g. map, filter, groupBy, join)
 - Lazy operations to build RDDs from other RDDs
- Actions (e.g. count, collect, save)
 - Return a result or write it to storage
Example: Mining Console Logs

- Load error messages from a log into memory, then interactively search for patterns

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split('\t')[2])
messages.cache()

messages.filter(lambda s: "foo" in s).count()
messages.filter(lambda s: "bar" in s).count()
...
```

Result: scaled to 1 TB data in 5-7 sec (vs 170 sec for on-disk data)
RDD Fault Tolerance

RDDs track the transformations used to build them (their lineage) to recompute lost data.

E.g:

```python
messages = textFile(...).filter(lambda s: s.contains("ERROR"))
          .map(lambda s: s.split('\t')[2])
```

Diagram:

- HadoopRDD
 - path = hdfs://...
- FilteredRDD
 - func = contains(...)
- MappedRDD
 - func = split(…)

The diagram shows the lineage of transformations applied to the original text file to create a filtered and mapped RDD.
Fault Recovery Test

Iteration time (s)

Failure happens

Iteration

119
57
56
58
58
81
57
59
57
59
Behavior with Less RAM

<table>
<thead>
<tr>
<th>% of working set in cache</th>
<th>Iteration time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache disabled</td>
<td>69</td>
</tr>
<tr>
<td>25%</td>
<td>58</td>
</tr>
<tr>
<td>50%</td>
<td>41</td>
</tr>
<tr>
<td>75%</td>
<td>30</td>
</tr>
<tr>
<td>Fully cached</td>
<td>12</td>
</tr>
</tbody>
</table>
Spark in Java and Scala

Java API:

```java
JavaRDD<String> lines = spark.textFile(...);

errors = lines.filter(
    new Function<String, Boolean>() {
        public Boolean call(String s) {
            return s.contains("ERROR");
        }
    });

errors.count()
```

Scala API:

```scala
val lines = spark.textFile(...)

errors = lines.filter(s => s.contains("ERROR"))
// can also write filter(_.contains("ERROR"))

errors.count
```
Which Language Should I Use?

- Standalone programs can be written in any, but console is only Python & Scala
- **Python developers**: can stay with Python for both
- **Java developers**: consider using Scala for console (to learn the API)

- Performance: Java / Scala will be faster (statically typed), but Python can do well for numerical work with NumPy
Scala Cheat Sheet

Variables:

```scala
var x: Int = 7
var x = 7 // type inferred
val y = "hi" // read-only
```

Functions:

```scala
def square(x: Int): Int = x*x
def square(x: Int): Int = {
  x*x // last line returned
}
```

Collections and closures:

```scala
val nums = Array(1, 2, 3)
nums.map((x: Int) => x + 2) // => Array(3, 4, 5)
nums.map(x => x + 2) // => same
nums.map(_ + 2) // => same
nums.reduce((x, y) => x + y) // => 6
nums.reduce(_ + _) // => 6
```

Java interop:

```scala
import java.net.URL
new URL("http://cnn.com").openStream()
```

More details: scala-lang.org
Outline

- Introduction to Spark
- Tour of Spark operations
- Job execution
- Standalone programs
- Deployment options
Learning Spark

- Easiest way: Spark interpreter (spark-shell or pyspark)
 - Special Scala and Python consoles for cluster use
- Runs in local mode on 1 thread by default, but can control with MASTER environment var:

 MASTER=local ./spark-shell # local, 1 thread
 MASTER=local[2] ./spark-shell # local, 2 threads
 MASTER=spark://host:port ./spark-shell # Spark standalone cluster
First Stop: SparkContext

- Main entry point to Spark functionality
- Created for you in Spark shells as variable `sc`
- In standalone programs, you’d make your own (see later for details)
Creating RDDs

Turn a local collection into an RDD
sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile("file.txt")
sc.textFile("directory/*.txt")
sc.textFile("hdfs://namenode:9000/path/file")

Use any existing Hadoop InputFormat
sc.hadoopFile(keyClass, valClass, inputFmt, conf)
Basic Transformations

nums = sc.parallelize([1, 2, 3])

Pass each element through a function
squares = nums.map(lambda x: x*x) # => {1, 4, 9}

Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) # => {4}

Map each element to zero or more others
numsflatMap(lambda x: range(0, x)) # => {0, 0, 1, 0, 1, 2}

Range object (sequence of numbers 0, 1, …, x-1)
nums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection
ums.collect() # => [1, 2, 3]

Return first K elements
nums.take(2) # => [1, 2]

Count number of elements
nums.count() # => 3

Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6

Write elements to a text file
nums.saveAsTextFile("hdfs://file.txt")
Spark’s “distributed reduce” transformations act on RDDs of *key-value pairs*

Python:
```python
pair = (a, b)
pair[0]  # => a
pair[1]  # => b
```

Scala:
```scala
val pair = (a, b)
pair._1  // => a
pair._2  // => b
```

Java:
```java
Tuple2 pair = new Tuple2(a, b);  // class scala.Tuple2
pair._1  // => a
pair._2  // => b
```
Some Key-Value Operations

```python
pets = sc.parallelize([("cat", 1), ("dog", 1), ("cat", 2)])
pets.reduceByKey(lambda x, y: x + y)
# => {(cat, 3), (dog, 1)}
pets.groupByKey()
# => {(cat, Seq(1, 2)), (dog, Seq(1))}
pets.sortByKey()
# => {(cat, 1), (cat, 2), (dog, 1)}
```

reduceByKey also automatically implements combiners on the map side
Example: Word Count

```python
lines = sc.textFile("hamlet.txt")
counts = lines.flatMap(lambda line: line.split(" ")) 
  .map(lambda word: (word, 1)) 
  .reduceByKey(lambda x, y: x + y)
```

```
"to be or"

"to"

"be"

"or"

"not to be"

"be"

"to"

"not"

Example: Word Count

\( \text{to} \) \( \text{be} \) \( \text{or} \) \( \text{not} \) \( \text{to} \) \( \text{be} \)

\( \text{(to, 1)} \) \( \text{(be, 1)} \) \( \text{(or, 1)} \) \( \text{(not, 1)} \) \( \text{(to, 2)} \)
visits = sc.parallelize([("index.html", "1.2.3.4"),
  ("about.html", "3.4.5.6"),
  ("index.html", "1.3.3.1")])

pageNames = sc.parallelize([("index.html", "Home"), ("about.html", "About")])

visits.join(pageNames)
# ("index.html", ("1.2.3.4", "Home"))
# ("index.html", ("1.3.3.1", "Home"))
# ("about.html", ("3.4.5.6", "About"))

visits.cogroup(pageNames)
# ("index.html", (Seq("1.2.3.4", "1.3.3.1"), Seq("Home")))
# ("about.html", (Seq("3.4.5.6"), Seq("About")))
Controlling the Level of Parallelism

- All the pair RDD operations take an optional second parameter for number of tasks

  ```python
 words.reduceByKey(lambda x, y: x + y, 5)
 words.groupByKey(5)
 visits.join(pageViews, 5)
  ```
Using Local Variables

- External variables you use in a closure will automatically be shipped to the cluster:
  ```python
 query = raw_input("Enter a query:"")
pages.filter(lambda x: x.startswith(query)).count()
  ```

- Some caveats:
  - Each task gets a new copy (updates aren’t sent back)
  - Variable must be Serializable (Java/Scala) or Pickle-able (Python)
  - Don’t use fields of an outer object (ships all of it!)
class MyCoolRddApp {
  val param = 3.14
  val log = new Log(...)
  ...

  def work(rdd: RDD[Int]) {
    rdd.map(x => x + param)
      .reduce(...)
  }
}

NotSerializableException: MyCoolRddApp (or Log)

How to get around it:

class MyCoolRddApp {
  ...

  def work(rdd: RDD[Int]) {
    val param_ = param
    rdd.map(x => x + param_)
      .reduce(...)
  }
}

References only local variable instead of this.param
More Details

- Spark supports lots of other operations!
- Full programming guide: spark-project.org/documentation
Outline

- Introduction to Spark
- Tour of Spark operations
  - Job execution
- Standalone programs
- Deployment options
Software Components

- Spark runs as a library in your program (one instance per app)
- Runs tasks locally or on a cluster
  - Standalone deploy cluster, Mesos or YARN
- Accesses storage via Hadoop InputFormat API
  - Can use HBase, HDFS, S3, …
Task Scheduler

- Supports general task graphs
- Pipelines functions where possible
- Cache-aware data reuse & locality
- Partitioning-aware to avoid shuffles

Stage 1
A: 
B: 
groupBy

Stage 2
C: 
D: 
map
E: 
filter

Stage 3
F: 
join

= RDD  = cached partition
Hadoop Compatibility

- Spark can read/write to any storage system / format that has a plugin for Hadoop!
  - Examples: HDFS, S3, HBase, Cassandra, Avro, SequenceFile
  - Reuses Hadoop's InputFormat and OutputFormat APIs
- APIs like SparkContext.textFile support filesystems, while SparkContext.hadoopRDD allows passing any Hadoop JobConf to configure an input source
Outline

- Introduction to Spark
- Tour of Spark operations
- Job execution
  - Standalone programs
- Deployment options
Build Spark

- Requires Java 6+, Scala 2.9.2

```sh
git clone git://github.com/mesos/spark
cd spark
sbt/sbt package

Optional: publish to local Maven cache
sbt/sbt publish-local
```
Add Spark to Your Project

- Scala and Java: add a Maven dependency on
  
  groupId: org.spark-project
  artifactId: spark-core_2.9.1
  version: 0.7.0-SNAPSHOT

- Python: run program with our pyspark script
Create a SparkContext

Scala

```scala
import spark.SparkContext
import spark.SparkContext._

val sc = new SparkContext("masterUrl", "name", "sparkHome", Seq("app.jar"))
```

Java

```java
import spark.api.java.JavaSparkContext

JavaSparkContext sc = new JavaSparkContext(
 "masterUrl", "name", "sparkHome", new String[] {"app.jar"});
```

Python

```python
from pyspark import SparkContext

sc = SparkContext("masterUrl", "name", "sparkHome", ["library.py"])
```
import spark.SparkContext
import spark.SparkContext.

object WordCount {
  def main(args: Array[String]) {
    val sc = new SparkContext("local", "WordCount", args(0), Seq(args(1)))
    val lines = sc.textFile(args(2))
    lines.flatMap(_.split(" "))
      .map(word => (word, 1))
      .reduceByKey(_ + _)
      .saveAsTextFile(args(3))
  }
}
import sys
from pyspark import SparkContext

if __name__ == '__main__':
    sc = SparkContext("local", "WordCount", sys.argv[0], None)
    lines = sc.textFile(sys.argv[1])

    lines.flatMap(lambda s: s.split(" "))
        .map(lambda word: (word, 1))
        .reduceByKey(lambda x, y: x + y)
        .saveAsTextFile(sys.argv[2])
Example: PageRank
Why PageRank?

- Good example of a more complex algorithm
  - Multiple stages of map & reduce
- Benefits from Spark’s in-memory caching
  - Multiple iterations over the same data
Basic Idea

- Give pages ranks (scores) based on links to them
  - Links from many pages $\rightarrow$ high rank
  - Link from a high-rank page $\rightarrow$ high rank
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page $p$ contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page $p$ contribute $\text{rank}_p / |\text{neighbors}_p|$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page \( p \) contribute \( \frac{\text{rank}_p}{|\text{neighbors}_p|} \) to its neighbors
3. Set each page’s rank to \( 0.15 + 0.85 \times \text{contribs} \)
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page $p$ contribute $\text{rank}_p / |\text{neighbors}_p|$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page $p$ contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$
Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page $p$ contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$

Final state:
Scala Implementation

```scala
val links = // RDD of (url, neighbors) pairs
var ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
 val contribs = links.join(ranks).flatMap {
 case (url, (links, rank)) =>
 links.map(dest => (dest, rank/links.size))
 }
 ranks = contribs.reduceByKey(_ + _)
 .mapValues(0.15 + 0.85 * _)
}

ranks.saveAsTextFile(...)
```
Python Implementation

```python
links = # RDD of (url, neighbors) pairs
ranks = # RDD of (url, rank) pairs

for i in range(NUM_ITERATIONS):
 def compute_contribs(pair):
 [url, [links, rank]] = pair # split key-value pair
 return [(dest, rank/len(links)) for dest in links]

 contribs = links.join(ranks).flatMap(compute_contribs)
 ranks = contribs.reduceByKey(lambda x, y: x + y) \
 .mapValues(lambda x: 0.15 + 0.85 * x)

 ranks.saveAsTextFile(...)```

PageRank Performance

![Bar chart showing iteration time (s) vs. number of machines for Hadoop and Spark.](chart.png)

- Iteration time for 30 machines:
 - Hadoop: 171 s
 - Spark: 23 s
- Iteration time for 60 machines:
 - Hadoop: 80 s
 - Spark: 14 s
Other Iterative Algorithms

K-Means Clustering
- Hadoop: 155 seconds
- Spark: 4.1 seconds

Logistic Regression
- Hadoop: 110 seconds
- Spark: 0.96 seconds

Time per Iteration (s)
Outline

- Introduction to Spark
- Tour of Spark operations
- Job execution
- Standalone programs
 - Deployment options
Local Mode

- Just pass `local` or `local[k]` as master URL
- Still serializes tasks to catch marshaling errors
- Debug using local debuggers
 - For Java and Scala, just run your main program in a debugger
 - For Python, use an attachable debugger (e.g. PyDev, winpdb)
- Great for unit testing
Private Cluster

- Can run with one of:
 - Standalone deploy mode (similar to Hadoop cluster scripts)
 - Apache Mesos: spark-project.org/docs/latest/running-on-mesos.html
 - Hadoop YARN: spark-project.org/docs/0.6.0/running-on-yarn.html

- Basically requires configuring a list of workers, running launch scripts, and passing a special cluster URL to SparkContext
Amazon EC2

- Easiest way to launch a Spark cluster

  ```
  git clone git://github.com/mesos/spark.git
  cd spark/ec2
  ./spark-ec2 -k keypair -i id_rsa.pem -s slaves \
  [launch|stop|start|destroy] clusterName
  ```

- Details: spark-project.org/docs/latest/ec2-scripts.html

- New: run Spark on Elastic MapReduce – tinyurl.com/spark-emr
Viewing Logs

- Click through the web UI at master:8080
- Or, look at stdout and stderr files in the Spark or Mesos “work” directory for your app:

 `work/<ApplicationID>/<ExecutorID>/stdout`

- Application ID (Framework ID in Mesos) is printed when Spark connects
Community

- Join the Spark Users mailing list:

groups.google.com/group/spark-users

- Come to the Bay Area meetup:

www.meetup.com/spark-users
Conclusion

- Spark offers a rich API to make data analytics *fast*: both fast to write and fast to run
- Achieves 100x speedups in real applications
- Growing community with 14 companies contributing
- Details, tutorials, videos: www.spark-project.org