Shark: Hive (SQL) on Spark

Reynold Xin
UC Berkeley AMP Camp
Aug 21, 2012
SELECT page_name, SUM(page_views) views
FROM wikistats GROUP BY page_name
ORDER BY views DESC LIMIT 10;
Stage 0: Map-Shuffle-Reduce

Mapper(row) {
 fields = row.split("\t")
 emit(fields[0], fields[1]);
}

Reducer(key, values) {
 page_views = 0;
 for (page_views in values) {
 sum += value;
 }
 emit(key, page_views);
}

Stage 1: Map-Shuffle

Mapper(row) {
 emit(page_views, page_name);
}

... shuffle sorts the data

Stage 2: Local

data = open("stage1.out")
for (i in 0 to 10) {
 print(data.getNext())
}
Outline

Hive and Shark

Data Model

Shark Demo

Beyond SQL Basics
Apache Hive

Puts structure/schema onto HDFS data

Compiles HiveQL queries into MapReduce jobs

Very popular: 90+% of Facebook Hadoop jobs generated by Hive

Initially developed by Facebook
OLAP vs OLTP

Hive is NOT for online transaction processing (OTLP)

Focuses on scalability and extensibility for data warehouses / online analytical processing (OLAP)
Scalability

Massive scale out and fault tolerance capabilities on commodity hardware

Can handle petabytes of data

Easy to provision (because of scale-out)
Extensibility

Data types: primitive types and complex types

User-defined functions

Scripts

Serializer/Deserializer: text, binary, JSON...

Storage: HDFS, Hbase, S3...
Hive Architecture

- Meta store
- Client
 - CLI
 - JDBC
- Driver
 - SQL Parser
 - Query Optimizer
 - Physical Plan
 - Execution
- MapReduce
- HDFS
I/O Bound

Hive query processing is I/O bound

Can in-memory computation help in petabyte-scale warehouses?
Median Hadoop job input data size at Microsoft, Yahoo and Facebook is only about 15gb!
research.microsoft.com/pubs/163083/ho...
Shark Motivations

Data warehouses exhibit a huge amount of temporal locality
 » 90% of Facebook queries could be served in RAM

Can we keep all the benefits of Hive (scalability and extensibility) and exploit the temporal locality?
Shark
Shark

Data warehouse system compatible with Hive
 » Supports Hive QL, UDFs, SerDes, scripts, types
 » A few esoteric features not yet supported

Makes Hive queries run faster
 » Allows caching data in a cluster’s memory
 » Various other performance optimizations

Integrates with Spark for machine learning ops
Caching Data in Shark

CREATE TABLE mytable_cached AS SELECT * FROM mytable WHERE count > 10;

Creates a table cached in a cluster’s memory using RDD.cache()
Outline

Hive and Shark

Data Model

Shark Demo

Beyond SQL Basics
Data Model

Tables: unit of data with the same schema

Partitions: e.g. range-partition tables by date

Buckets: hash-partitions within partitions
(not yet supported in Shark)
Data Types

Primitive types
» TINYINT, SMALLINT, INT, BIGINT
» BOOLEAN
» FLOAT, DOUBLE
» STRING

Complex types
» Structs: STRUCT {a INT; b INT}
» Arrays: ['a', 'b', 'c']
» Maps (key-value pairs): M['key']
Hive QL

Subset of SQL
 » Projection, selection
 » Group-by and aggregations
 » Sort by and order by
 » Joins
 » Sub-queries, unions

Hive-specific
 » Supports custom map/reduce scripts (TRANSFORM)
 » Hints for performance optimizations
Outline

Hive and Shark

Data Model

Shark Demo

Beyond SQL Basics
Outline

Hive and Shark
Data Model
Shark Demo
Beyond SQL Basics
select
 page_name,
 sum(page_views) hits
from wikistats_cached
where
 page_name like "%berkeley%"
group by page_name
order by hits;
select page_name, sum(page_views) hits from wikistats_cached
where page_name like "%berkeley%"
group by page_name order by hits;

filter (map) groupby sort
Additional Improvements

Caching data in-memory

Hash-based shuffles for group-by

Distributed sort

Better push-down of limits
Caching

SELECT * FROM pages WHERE body LIKE '%%XYZ%%'

<table>
<thead>
<tr>
<th>Execution Time (s)</th>
<th>Hive</th>
<th>Shark (disk)</th>
<th>Shark (RAM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Sort, limit, hash shuffle

SELECT sourceIP, AVG(pageRank), SUM(adRevenue) AS earnings
FROM rankings AS R, userVisits AS V
ON R.pageURL = V.destURL
WHERE V.visitDate BETWEEN '1999-01-01' AND '2000-01-01'
GROUP BY V.sourceIP
ORDER BY earnings DESC LIMIT 1
Performance Tuning

Two parameters that can significantly affect performance:

- Setting the number of reducers
- Map-side aggregation
Num of Reducers

SET mapred.reduce.tasks=50;

Shark relies on Spark to infer the number of map tasks (automatically based on input size)

Number of reduce tasks needs to be specified by the user

Out of memory error on slaves if num too small
Map-side Aggregation

SET hive.map.aggr=TRUE;

Aggregation functions are algebraic and can be applied on mappers to reduce shuffle data

Each mapper builds a hash-table to do the first-level aggregation
Map-side Aggregation

Use: small number of distinct keys

```
SELECT dt, count(page_views)
FROM wikistats GROUP BY dt;
```

Do NOT use: large number of distinct keys

```
SELECT page_name, count(page_views)
FROM wikistats GROUP BY page_name;
```
SQL/Spark Integration

Write simple SQL queries for extracting data, and express complex analytics in Spark.

Query processing and machine learning share the same set of workers and caches.

```scala
val youngUsers = sql2rdd(  
  "SELECT * FROM users WHERE age < 20"
)

println(youngUsers.count)

val featureMatrix =  
  youngUsers.mapRows(extractFeatures)

kmeans(featureMatrix)
```
Getting Started

The Spark EC2 AMI comes with Shark installed (in /root/shark)

Requires Mesos to deploy in private cloud

Hadoop YARN deployment coming soon
Exercises

Each on-site audience gets a 4-node EC2 cluster preloaded with Wikipedia traffic statistics data.

Streaming audiences get an AMI preloaded with all software (Mesos, Spark, Shark).

Use Spark and Shark to analyze the data.
More Information

Hive resources:
» https://cwiki.apache.org/confluence/display/Hive/GettingStarted
» http://hive.apache.org/docs/

Shark resources:
» http://shark.cs.berkeley.edu
» https://github.com/amplab/shark
Backup slides
Memory Footprint of Caching TPC-H lineitem Table (1.8 million rows)

- **Text**: 225MB
- **Serialized**: 250MB
- **Java Objects**: 971MB
- **Writables**: 722MB
- **Columnar**: 278MB
Performance Comparison of Caching (selecting 725 rows out of 1.8 million rows)

- **Text**: Execution Time (secs) = 3.32
- **Serialized**: Execution Time (secs) = 3.27
- **Java Objects**: Execution Time (secs) = 1.89
- **Writables**: Execution Time (secs) = 1.51
- **Columnar**: Execution Time (secs) = 1.63
Comparison with OS Buffer Cache (Query 1. Large Sequential Scan & Grep)

- **Shark (cache)**: 10s
- **Shark (OS buffer)**: 53s
- **Shark (uncached)**: 182s

Execution Time (secs): 0 to 200