Shark:
Hive (SQL) on Spark

Reynold Xin

UC Berkeley AMP Camp

lab

Aug 21, 2012

SELECT page_name, SUM(page_views) views
FROM wikistats GROUP BY page_name
ORDER BY views DESC LIMIT 10;

Stage 0: Map-Shuffle-Reduce

Mapper(row) {

}

fields = row.split("\t")
emit(fields[0@], fields[1]);

Reducer(key, values) {

}

page_views = 0;
for (page_views 1in values) {
sum += value;

}

emit(key, page_views);

Stage 1: Map-Shuffle
Mapper(row) {
emit(page_views, page_name);

}

. Shuffle sorts the data
Stage 2: Local
data = open("stagel.out")

for (i in @ to 10) {
print(data.getNext())
h

Outline

Hive and Shark
Data Model

Shark Demo
Beyond SQL Basics

Apache Hive

Puts structure/schema onto HDFS data
Compiles HiveQL queries into MapReduce jobs

Very popular: 9go+% of Facebook Hadoop jobs
generated by Hive

Initially developed by Facebook

OLAP vs OLTP

Hive is NOT for online transaction processing
(OTLP)

Focuses on scalability and extensibility for
data warehouses [online analytical processing
(OLAP)

Scalability

Massive scale out and fault tolerance
capabilities on commodity hardware

Can handle petabytes of data

Easy to provision (because of scale-out)

Extensibility

Data types: primitive types and complex types
User-defined functions

Scripts

Serializer/Deserializer: text, binary, JSON...

Storage: HDFS, Hbase, S3...

Hive Architecture

Client CLI JDBC

Driver

Meta l l

Physical Plan
ctore SQL Query Y

Parser | Optimizer

Execution

4

MapReduce ‘

HDFS

/O Bound

Hive query processing is I/O bound

Can in-memory computation help in petabyte-
scale warehouses?

@jure

ﬂ Jure Leskovec b S

Median Hadoop job input data size at
Microsoft, Yahoo and Facebook is only about

158b!
research.microsoft.com/pubs/163083/ho...

4~ Reply T3 Retweeted W Favorite & Pocket

- 2 B -2 0%
RETWEETS = FAVORITES .
§

F't wigH e oAy
"‘—J}‘\

A Lombard St Russian Hill

B oociic =3
" Heights fog =
0 Downtown -

from SoMa
San Francisco, CA

4:33 PM - 9 Jul 12 via Twitter for iPhone - Embed this Tweet

Shark Motivations

Data warehouses exhibit a huge amount of
temporal locality
» 9o% of Facebook queries could be served in RAM

Can we keep all the benefits of Hive (scalability

and extensibility) and exploit the temporal
locality?

Hive

CLI

Driver

Query Physical Plan

Optimizer Execution

4

MapReduce ‘

HDFS

Shark

CLI

Driver | Cache Mgr.

nysical Plan

Query

Optimizer Execution

Shark

Data warehouse system compatible with Hive
» Supports Hive QL, UDFs, SerDes, scripts, types
» A few esoteric features not yet supported

Makes Hive queries run faster
» Allows caching data in a cluster’s memory
» Various other performance optimizations

Integrates with Spark for machine learning ops

Caching Data in Shark

CREATE TABLE mytable_cached AS SELECT * FROM
mytable WHERE count > 10;

Creates a table cached in a cluster’'s memory
using RDD.cache()

Outline

Hive and Shark
Data Model

Shark Demo
Beyond SQL Basics

Data Model

Tables: unit of data with the same schema

Partitions: e.g. range-partition tables by date

Buckets: hash-partitions within partitions
(not yet supported in Shark)

Data Types

Primitive types
» TINYINT, SMALLINT, INT, BIGINT
» BOOLEAN
» FLOAT, DOUBLE
» STRING

Complex types
» Structs: STRUCT {a INT; b INT?
» Arrays: ['a', 'b', 'c']
» Maps (key-value pairs): M['key’]

Hive QL

Subset of SQL

» Projection, selection

» Group-by and aggregations
» Sort by and order by

» Joins

» Sub-queries, unions

Hive-specific
» Supports custom map/reduce scripts (TRANSFORM)
» Hints for performance optimizations

Outline

Hive and Shark
Data Model

Shark Demo
Beyond SQL Basics

Outline

Hive and Shark
Data Model

Shark Demo
Beyond SQL Basics

select
page_name,
sum(page_views) hits
from wikistats_cached
where
page_name like "%berkeley%”
group by page_name
order by hits;

select page_name, sum(page_views) hits
from wikistats_cached

where page_name like "%berkeley%”
group by page_name order by hits;

- > -
- > -

_ il

filter (map) groupby sort

Additional Improvements

Caching data in-memory
Hash-based shuffles for group-by
Distributed sort

Better push-down of limits

Caching

SELECT * FROM pages WHERE body LIKE ‘%XYZ%’

ive [
Shark (cisk) [

Shark (RAM) 2

0 5 10 15 20 25 30 35 4O
Execution Time (s)

Sort, limit, hash shuffle

SELECT sourceIP, AVG(pageRank), SuM(adRevenue) AS earnings
FROM rankings AS R, uservisits AS V ON R.pageURL = V.destURL
WHERE V.visitDate BETWEEN ‘1999-01-01" AND ‘2000-01-01’
GROUP BY V.sourcelIP

ORDER BY earnings DESC LIMIT 1

Hive . . . 447
Shark (disk) . - 270
Shark (RAM) 1;6
0 100 200 300 400 500

Execution Time (s)

Performance Tuning

Two parameters that can significantly affect
performance:

Setting the number of reducers

Map-side aggregation

Num of Reducers

SET mapred.reduce.tasks=50;

Shark relies on Spark to infer the number of
map tasks (automatically based on input size)

Number of reduce tasks needs to be specified
by the user

Out of memory error on slaves if num too small

Map-side Aggregation

SET hive.map.aggr=TRUE;

Aggregation functions are algebraic and can be
applied on mappers to reduce shuffle data

Each mapper builds a hash-table to do the first-
level aggregation

Map-side Aggregation

Use: small number of distinct keys

SELECT dt, count(page_views)
FROM wikistats GROUP BY dt;

Do NOT use: large number of distinct keys

SELECT page_name, count(page_views)
FROM wikistats GROUP BY page_name;

SQL/Spark Integration

Write simple SQL queries for extracting data,
and express complex analytics in Spark

Query processing and machine learning share
the same set of workers and caches

"SELECT * FROM users WHERE age < 20")

val featureMatrix =
youngUsers.mapRows (extractFeatures)

Getting Started

The Spark EC2 AMI comes with Shark installed
(in [root/shark)

Requires Mesos to deploy in private cloud

Hadoop YARN deployment coming soon

Exercises

Each on-site audience gets a 4-node EC2 cluster

preloaded with Wikipedia traffic statistics c

Streaming audiences get an AMI preloadec
all software (Mesos, Spark, Shark)

Use Spark and Shark to analyze the data

ata

with

More Information

Hive resources:
» https://cwiki.apache.org/confluence/display/Hive/
GettingStarted
» http://hive.apache.org/docs/

Shark resources:

» http://shark.cs.berkeley.edu
» https://github.com/amplab/shark

Backup slides

Serialized

Java Objects

Writables

Columnar

Memory Footprint of Caching TPC-H lineitem Table (1.8 million rows)

2501MB

250 500 750 1000
Size (MB)

Performance Comparison of Caching (selecting 725 rows out of 1.8 million rows)

Text

Serialized 307

Java Objects

Writables

Columnar

0 I 2 3 4

Execution Time (secs)

Comparison with OS Buffer Cache (Query |. Large Sequential Scan & Grep)

Shark (cache)

Shark (OS buffer)

Shark (uncached)

0 40 80 120 160 200

Execution Time (secs)

