Advanced Spark Features

Matei Zaharia

UC Berkeley

www.spark-project.org
Motivation

You’ve now seen the core primitives of Spark: RDDs, transformations and actions

As we’ve built applications, we’ve added other primitives to improve speed & usability

» A key goal has been to keep Spark a small, extensible platform for research

These work seamlessly with the existing model
Spark Model

Process distributed collections with functional operators, the same way you can for local ones:

```scala
val points: RDD[Point] = // ...
var clusterCenters = new Array[Point](k)

val closestCenter = points.map {
  p => findClosest(clusterCenters, p)
}
...
```
Spark Model

Process distributed **collections with functional operators**, the same way you can for local ones

```scala
val points: RDD[Point] = // ... 
var clusterCenters = new Array[Point](k)

val closestCenter = points.map {
  p => findClosest(clusterCenters, p)
}
...
```

Two foci for extension: collection storage & layout, and interaction of functions with program
Spark Model

Process distributed collections with functional operators, the same way you can for local ones

```scala
val points: RDD[Point] = // ...
var clusterCenters = new Array[Point](k)

val closestCenter = points.map {
  p => findClosest(clusterCenters, p)
}
...
```

How should this be split across nodes?

Two foci for extension: collection storage & layout, and interaction of functions with program
Spark Model

Process distributed collections with functional operators, the same way you can for local ones.

```scala
val points: RDD[Point] = // ...
var clusterCenters = new Array[Point](k)

val closestCenter = points.map {
  p => findClosest(clusterCenters, p)
}
```

Two foci for extension: collection storage & layout, and interaction of functions with program.
Outline

Broadcast variables
Accumulators
Controllable partitioning
Extending Spark

Richer shared variables
Data layout
Motivation

Normally, Spark closures, including variables they use, are sent separately with each task

In some cases, a large read-only variable needs to be shared across tasks, or across operations

Examples: large lookup tables, “map-side join”
Example: Join

// Load RDD of (URL, name) pairs
val pageNames = sc.textFile("pages.txt").map(...)

// Load RDD of (URL, visit) pairs
val visits = sc.textFile("visits.txt").map(...)

val joined = visits.join(pageNames)

Shuffles both pageNames and visits over network
Alternative if One Table is Small

```scala
val pageNames = sc.textFile("pages.txt").map(...) val pageMap = pageNames.collect().toMap()

val visits = sc.textFile("visits.txt").map(...) val joined = visits.map(v => (v._1, (pageMap(v._1), v._2)))
```

Runs *locally* on each block of *visits.txt*

pageMap sent along with every task
Better Version with Broadcast

```scala
val pageNames = sc.textFile("pages.txt").map(...)
val pageMap = pageNames.collect().toMap()
val bc = sc.broadcast(pageMap)
val visits = sc.textFile("visits.txt").map(...)
val joined = visits.map(v => (v._1, (bc.value(v._1), v._2)))
```

Only sends pageMap to each node once

Type is Broadcast[Map[...]]

Call .value to access value
Broadcast Variable Rules

Create with `SparkContext.broadcast(initialVal)`

Access with `.value` inside tasks
 » First task to do so on each node fetches the value

Cannot modify value after creation
 » If you try, change will only be on one node
Scaling Up Broadcast

Initial version (HDFS)

Cornet P2P broadcast

[Chowdhury et al, SIGCOMM 2011]
Cornet Performance

1GB data to 100 receivers

Hadoop’s “distributed cache”

[Chowdhury et al, SIGCOMM 2011]
Outline

Broadcast variables

Accumulators

Controllable partitioning

Extending Spark
Motivation

Often, an application needs to aggregate multiple values as it progresses.

Accumulators generalize MapReduce’s counters to enable this.
Usage

```scala
val badRecords = sc.accumulator(0)
val badBytes = sc.accumulator(0.0)

records.filter(r => {
  if (isBad(r)) {
    badRecords += 1
    badBytes += r.size
    false
  } else {
    true
  }
}).save(...)

printf("Total bad records: %d, avg size: %f\n",
  badRecords.value, badBytes.value / badRecords.value)
```
Accumulator Rules

Create with `SparkContext.accumulator(initialVal)`

“Add” to the value with `+=` inside tasks
 » Each task’s effect only counted once

Access with `.value`, but only on master
 » Exception if you try it on workers
Custom Accumulators

Define an object extending AccumulatorParam[T], where T is your data type, and providing:

» A zero element for a given T
» An addInPlace method to merge in values

class Vector(val data: Array[Double]) {...}

implicit object VectorAP extends AccumulatorParam[Vector] {
 def zero(v: Vector) = new Vector(new Array(v.data.size))

 def addInPlace(v1: Vector, v2: Vector) = {
 for (i <- 0 to v1.data.size-1) v1.data(i) += v2.data(i)
 return v1
 }
}

Now you can use sc.accumulator(new Vector(...))
Another Common Use

```scala
val sum = sc.accumulator(0.0)
val count = sc.accumulator(0.0)

records.foreach(r => {
  sum += r.size
  count += 1.0
})

val average = sum.value / count.value
```

Action that only runs for its side-effects
Outline

Broadcast variables

Accumulators

Controllable partitioning

Extending Spark
Motivation

Recall from yesterday that network bandwidth is \(\sim 100\times\) as expensive as memory bandwidth.

One way Spark avoids using it is through locality-aware scheduling for RAM and disk.

Another important tool is controlling the \textit{partitioning} of RDD contents across nodes.
Example: PageRank

1. Start each page at a rank of 1
2. On each iteration, have page p contribute $\frac{\text{rank}_p}{|\text{neighbors}_p|}$ to its neighbors
3. Set each page’s rank to $0.15 + 0.85 \times \text{contribs}$

```scala
val links = // RDD of (url, neighbors) pairs
var ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
  val contribs = links.join(ranks).flatMap {
    case (url, (links, rank)) =>
      links.map(dest => (dest, rank/links.size))
  }
  ranks = contribs.reduceByKey(_ + _).mapValues(.15 + .85* _)
}
```
PageRank Execution

Links (url, neighbors) → map

Ranks₀ (url, rank) → join

Contribs₀ → reduceByKey

Ranks₁ → join

Contribs₂ → reduceByKey

Ranks₂ → ...

A links and ranks are repeatedly joined

Each join requires a full shuffle over the network
 » Hash both onto same nodes

Input File

Map tasks

Reduce tasks
Solution

Pre-partition the `links` RDD so that links for URLs with the same hash code are on the same node

```scala
val ranks = // RDD of (url, rank) pairs
val links = sc.textFile(...).map(...)
  .partitionBy(new HashPartitioner(8))

for (i <- 1 to ITERATIONS) {
  ranks = links.join(ranks).flatMap {
    (url, (links, rank)) =>
      links.map(dest => (dest, rank/links.size))
  }.reduceByKey(_ + _)
  .mapValues(0.15 + 0.85 * _)
}
```
New Execution

Input File

map

partitionBy

Links

Links not shuffled

Ranks

Ranks also not shuffled

join

flatMap

reduceByKey

join

flatMap

reduceByKey

\[
\begin{align*}
\text{Partition by} & \map & \text{Input File} \\
\text{Links} & \text{Links} & \text{not shuffled} \\
\text{Ranks} & \text{Ranks} & \text{also not shuffled} \\
\text{join} & \text{flatMap} & \text{reduceByKey} \\
\text{join} & \text{flatMap} & \text{reduceByKey} \\
\end{align*}
\]
How it Works

Each RDD has an optional Partitioner object.

Any shuffle operation on an RDD with a Partitioner will respect that Partitioner.

Any shuffle operation on two RDDs will take on the Partitioner of one of them, if one is set.

Otherwise, by default use HashPartitioner.
Examples

```
pages.join(visits).reduceByKey(...)
```

Output of join is already partitioned

```
pages.join(visits).map(...).reduceByKey(...)
```

map loses knowledge about partitioning

```
pages.join(visits).mapValues(...).reduceByKey(...)
```

mapValues retains keys unchanged
PageRank Performance

Why it helps so much: Links RDD is much bigger in bytes than ranks!
Telling How an RDD is Partitioned

Use the .partitioner method on RDD

```scala
scala> val a = sc.parallelize(List((1, 1), (2, 2)))
scala> val b = sc.parallelize(List((1, 1), (2, 2)))
scala> val joined = a.join(b)

scala> a.partitioner
res0: Option[Partitioner] = None

scala> joined.partitioner
res1: Option[Partitioner] = Some(HashPartitioner@286d41c0)
```
Custom Partitioning

Can define your own subclass of `Partitioner` to leverage domain-specific knowledge

Example: in PageRank, hash URLs by domain name, because may links are internal

class DomainPartitioner extends Partitioner {
 def numPartitions = 20

 def getPartition(key: Any): Int =
 parseDomain(key.toString).hashCode % numPartitions

 def equals(other: Any): Boolean =
 other.isInstanceOf[DomainPartitioner]
}
Outline

Broadcast variables

Accumulators

Controllable partitioning

Extending Spark
Extension Points

Spark provides several places to customize functionality:

Extending RDD: add new input sources or transformations

spark.cache.class: customize caching

spark.serializer: customize object storage
What People Have Done

New RDD transformations (sample, glom, mapPartitions, leftOuterJoin, rightOuterJoin)

New input sources (DynamoDB)

Custom serialization for memory and bandwidth efficiency
Why Change Serialization?

Greatly impacts network usage

Can also be used to improve memory efficiency
 » Java objects are often larger than raw data
 » Most compact way to keep large amounts of data in memory is SerializingCache

Spark’s default choice of Java serialization is very simple to use, but very slow
 » High space & time cost due to forward compatibility
Serializer Benchmark: Time

Source: http://code.google.com/p/thrift-protobuf-compare/wiki/Benchmarks
Serializer Benchmark: Space

Source: http://code.google.com/p/thrift-protobuf-compare/wiki/Benchmarking
Better Serialization

You can implement your own serializer by extending `spark.Serializer`

But as a good option that saves a lot of time, we recommend Kryo (code.google.com/p/kryo)

» One of the fastest, but minimal boilerplate
» *Note:* Spark currently uses Kryo 1.x, not 2.x
Using Kryo

class MyRegistrator extends spark.KryoRegistrar {
 def registerClasses(kryo: Kryo) {
 kryo.register(classOf[Class1])
 kryo.register(classOf[Class2])
 }
}

System.setProperty(
 "spark.serializer", "spark.KryoSerializer")
System.setProperty(
 "spark.kryo.registrator", "mypkg.MyRegistrator")
System.setProperty(
 "spark.cache.class", "mypkg.SerializableCache")

val sc = new SparkContext(...)
Impact of Serialization

Saw as much as $4\times$ space reduction and $10\times$ time reduction with Kryo

Simple way to test serialization cost in your program: profile it with jstack or hprof

We plan to work on this further in the future!
Codebase Size

Spark core: 14,000 LOC

- RDD ops: 1600
- Block store: 2000
- Accumulators: 200
- Scheduler: 2000
- Networking: 1200
- Broadcast: 3500

Interpreter: 3300 LOC

Hadoop I/O: 400 LOC

Mesos runner: 700 LOC

Standalone runner: 1200 LOC
Conclusion

Spark provides a variety of features to improve application performance
 » Broadcast + accumulators for common sharing patterns
 » Data layout through controlled partitioning

With in-memory data, the bottleneck often shifts to network or CPU

You can do more by hacking Spark itself – ask us if interested!